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Abstract

In this paper, the Green's functions of an in®nite two-dimensional piezoelectric material containing an elliptical
cavity are re-investigated by introducing exact electric boundary conditions on the hole boundary, and the
corresponding modi®ed solutions are obtained. By setting E0, the dielectric constant in the cavity, to be zero, the

modi®ed Green's functions are returned to the conventional ones (Lu and Williams, 1998). Furthermore, the hoop
stresses along the hole boundary under the action of a set of generalized concentrated forces are obtained. When the
hole is reduced to a slit crack, the expressions of generalized stress intensity factors are also provided. # 1999
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1. Introduction

The problems of Green's functions for two or three-dimensional piezoelectric materials have been
studied by many researchers (e.g. Dunn, 1994a; Norris, 1994; Khutoryansky and Sosa, 1995; Lu and
Williams, 1998). The electroelastic Green's functions play an important role in the analysis of
piezoelectric inclusion and inhomogeneity problems, defect and crack problems, as well as stress and
electric concentration problems. Especially, the Green's functions can be used as fundamental solutions
of well used boundary element method for solving piezoelectric problems with ®nite boundary sizes and
subjected to general mechanical±electric loading (Lu and Mahrenholtz, 1994; Lee and Jiang, 1994;
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Khutoryansky and Sosa, 1995; Liang and Hwu, 1996). Therefore, an in-depth investigation and
understanding of the properties for the mechanical±electric coupled Green's functions is essential.

Due to the similarities of the expressions between elasticity and piezoelectricity, the solutions for
elastic problems usually can be extended to relevant piezoelectric problems following proper regularities
in many cases. However, care should be taken for some situations because the direct extensions may
lead to physically incorrect results. One of the examples is given by considering a piezoelectric material
containing a cavity or a crack with free surface. The solutions for this kind of the problems were
obtained by extending the relevant results of elastic medium with traction free holes (for examples, Sosa,
1991; Pak, 1992; Chung and Ting, 1996; Lu and Williams, 1998). In physical terms, this kind of
extensions implies that the boundary condition along the cavity or crack surface is assumed to be
traction free and electric impermeable, i.e. ignoring the electric ®eld within the cavity or crack. Recent
studies have shown that this commonly used electric boundary condition in the literature could lead to
physically unreasonable results, especially in the case of cracks (Dunn, 1994b; Sosa and Khutoryansky,
1996; Zhang et al., 1998). Therefore, the current work in the problems has tended to use the exact
electric boundary condition, i.e. the normal component of electric displacement is continuous across the
cavity or crack surface. In view of this fact, some of the previous results based on the simpli®ed electric
conditions should be improved.

In this paper, the Green's functions of piezoelectric material with an elliptical cavity are re-
investigated. The solutions were obtained by Lu and Williams (1998) based on the assumption of electric
impermeability on the surface of the cavity. As indicated above, the solutions may result in considerable
error when the cavity becomes a very slender ellipse or a sharp crack. Due to the important analytical
and numerical applications of the Green's functions in solving piezoelectric materials with defects, the
formulations obtained previously should be modi®ed by introducing the correct electrical boundary
conditions.

Recently, Ting (1996) investigated Green's functions for an in®nite anisotropic elastic medium with an
elliptical inclusion of dissimilar material. By carefully including image singularities in the solutions, the
constructed Green's functions subjected to a singularity outside, inside, or on the interface of the
elliptical inclusion can be reduced to the same solution when the applied singularity is on the elliptical
boundary. Furthermore, the paper provides a regular way to construct the Green's functions of the
subject. In this paper, the suggested method by Ting (1996) is extended to determine the Green's
functions for a piezoelectric medium with an elliptical cavity.

2. Basic equations

In a ®xed rectangular coordinate system xi (i= 1, 2, 3), the linear constitutive relations for
piezoelectric materials are given by

sij � Cijkmgkm ÿ emijEm, Di � eikmgkm � EimEm, �1�

where sij, gij, Di and Ek are stress, strain, electric displacement and electric ®eld components,
respectively; Cijkm, emij and Eim are elastic, piezoelectric and dielectric constants, respectively, which
satisfy the following symmetries:

Cijkm � Cjikm � Cijmk � Ckmij, emij � emji, Eim � Emi: �2�

If ui are mechanical displacements and f the electric potential, the deformation relations are
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gij �
1

2
�ui,j � uj,i �, Ei � ÿf,i: �3�

In the absence of body forces and free charges, the governing equations of linear piezoelectricity are

sij,i � 0, Di,i � 0: �4�
To treat the elastic and electric variables on an equal footing and reduce the amount of writing, the

notation introduced by Barnett and Lothe (1975) is reviewed here. De®ning

UK �
�
uk, K � 1,2,3,
f, K � 4,

�5�

ZKm �
�
gkm, K,m � 1,2,3,
Em, K � 4; m � 1,2,3,

�6�

SiJ �
�
sij, i,J � 1,2,3,
Di, i � 1,2,3; J � 4,

�7�

EiJKm �

8>><>>:
Cijkm, i,J,K,m � 1,2,3,
emij, i,J,m � 1,2,3; K � 4,
eikm, i,K,m � 1,2,3; J � 4,
ÿEim, i,m � 1,2,3; J,K � 4,

�8�

in which lower case subscripts take on the range 1±3, while the capital subscripts take on the range 1±4,
and repeated capital subscripts are summed over 1±4. With this notation, the constitutive equations Eq.
(1), and the governing equations Eq. (4) can be expressed in shorthand form as

SiJ � EiJKmZKm � EiJKmUK,m �9�

SiJ,i � 0: �10�
It is seen that the governing equations for piezoelectric problems have similar expressions to those for

elastic ones. Therefore, some solutions for elastic problems can be extended to relevant piezoelectric
ones with proper modi®cations.

For two-dimensional deformations in which uk and f, or UK, depend on x1 and x2 only, an extended
version of Stroh formalism satisfying Eqs. (9) and (10) has been developed (see, for example, Chung and
Ting, 1996; Lu and Williams, 1998). It is summarized here. The general solution to Eq. (10) could be
expressed as

u � fuk,fgT � af �z�, z � x1 � px2, �11�
in which f(z ) is an arbitrary function of z and p and a satisfy the relation�

Q� p�R� RT� � p2T
	
a � 0, �12�

where Q, R and T are 4 � 4 matrices:

QIK � E1IK1, RIK � E1IK2, TIK � E2IK2: �13�
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Let the generalized stress functions, c, be de®ned as

c � bf �z�, �14�
where

b � �RT � pT�a � ÿ1
p
�Q� pR�a: �15�

The elastic stress and the electric displacements can then be expressed as�
s2j
D2

�
� c,1,

�
s1j
D1

�
� ÿc,2: �16�

It is known that the four order equations Eq. (12) are an eigenvalue problem, which gives four pairs
of complex conjugates and corresponding vectors. Let pa (a=1, 2, 3, 4) be eigenvalues with
Im{ pa } > 0, aa and ba the associated eigenvectors, the general solutions for the generalized
displacements u and generalized stress functions c can thus be written as (Ting, 1996)

u � 1

p
ImfAhf �z��iqg, c � 1

p
ImfBhf �z��iqg, �17�

where

hf �z��i � diag� f�z1�,f �z2�,f �z3�,f �z4��, q � fq1,q2,q3,q4gT,

A � �a1,a2,a3,a4�, B � �b1,b2,b3,b4�, �18�
and za=x1+pax2. The arbitrary functions f(z ) and the unknown constant vector q in Eq. (17) are
determined by the boundary conditions set for each particular problem.

It is seen that the extended Stroh formalism for piezoelectricity has the same form as the Stroh
formalism for anisotropic electricity. Therefore, most properties and identities existing in the Stroh
formalism for anisotropic elasticity can be extended to piezoelectric problems.

3. Boundary conditions of a piezoelectric material with an elliptical cavity

Consider an in®nite two-dimensional anisotropic piezoelectric material containing an elliptical cavity,
described by O and Oc, respectively, and subjected to a concentrated mechanical force and electric
charge density vector p at x0 � �x0

1, x
0
2� outside the ellipse, as shown in Fig. 1. The contour G is given

by

x1 � a cos W, x2 � b sin W, �19�
where W is a real parameter, and a and b are the semi-major and semi-minor axes of the ellipse,
respectively. The unit tangential vector n and the unit normal vector m are given by

n � fcos y, sin y, 0gT, m � fÿsin y, cos y, 0gT, �20�
where y is directed counterclockwise from the positive x1-axis to the direction of n. From Eq. (16), the
traction and electric displacement components in the piezoelectric material medium, along the hole
surface, can be expressed as
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tm � fs �m, DDD �mgT � ft1, t2, t3, DmgT � c,n, �21�
in which tj is the component of surface traction vector.

The cavity is assumed to be ®lled with a homogeneous gas of dielectric constant E0, and is free of
forces and surface charge density (Sosa and Khutoryansky, 1996). Therefore, the induced electric
displacements Dc

i and electric ®elds E c
i exist in Oc and can be described via the constitutive relation

Dc
i � E0E c

i �22�
and the deformation relation

E c
i � ÿfc

,i, �23a�

respectively. The electric potential f c in Oc can be solved from an equilibrium equation, i.e.

Dc
i,i � fc

,ii � 0: �23b�
Following the treatment of the previous section, the general solution to Eq. (23b) can be expressed as

fc � f c�z�, z � x1 � ix2, �24�
where f c(z ) is an arbitrary function of z. It can be veri®ed that Eq. (24) has satis®ed Eq. (23b).
Similarly, de®ning

cc � bcf c�z�, bc � ÿiE0, �25�
the electric displacements Dc

i , can therefore be written as

Dc
1 � ÿcc

,2, D
c
2 � cc

,1: �26�
In this way, the normal component of the electric displacement can be expressed as

Dc
m � Dc �m � cc

,n: �27�
The boundary conditions along the surface of the cavity is prescribed such that the boundary is

traction free and the normal component of the electric displacement as well as the electric potential are
continuous across the surface, i.e.

Fig. 1. An in®nite two-dimensional piezoelectric material with an elliptic cavity under a concentrated force vector p acting at point

x0.
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tj � 0, Dm � Dc
m, f � fc: �28�

In the previous work by Lu and Williams (1998), Eq. (28b) and (28c) were approximated by the single
equation Dm=0 (the so-called condition of impermeability). By using Eqs. (21) and (27), after proper
treatment, Eq. (28) can be equivalently expressed as

eTu � fc, c � ecc, e � �0, 0, 0, 1�T, �29�
where u and c are four order vectors given by Eq. (17), f c and c c are the scalar functions in the cavity.
Eq. (29) provides a concise form of the general boundary conditions de®ned on the cavity.

4. Green's functions

4.1. Conformal mapping

It is known that the transformation functions,

za � caBa � daBÿ1a , �30�
can map the region O outside the ellipse in the za-plane onto the outside of a unit circle in the B-plane.
In Eq. (30), ca=1/2(aÿipab ) and da=1/2(aÿipab ). Since the roots of dza/dBa are located inside the unit
circle, the transformations Eq. (30) are one-to-one outside the hole and Ba|G=eiW when za are on the
elliptical boundary, in which W is de®ned in Eq. (19). On the other hand, the mapping of the region Oc

inside the ellipse is done by considering a straight line G0 along x1 and of length 2
���������������
a2 ÿ b2
p

(Sosa and
Khutoryansky, 1996). The function,

z � 1

2
�a� b��B� tBÿ1�, �31�

can therefore map the region in the z-plane enclosed by the ellipse excluding the line G0 onto the region
in the B-plane of an annular ring between the unit circle B|G=eiW and the inner circle BjG0

� ��
t
p

eiW, in
which t=(aÿb )/(a+b ). In the annular ring, a holomorphic function F(B ) can be expressed by Laurent's
expansion as

F�B� �
X1
k�1

aÿkBÿk �
X1
k�0

akBk
��
t
p

RjBjR1: �32�

To ensure the function is single valued inside the cavity and along the line G0, the following condition
must be satis®ed (Sosa and Khutoryansky, 1996):

F� ��
t
p

eiW� � F� ��
t
p

eÿiW�, �33�
from which the relations between the coe�cients aÿk and ak in Eq. (32) can be determined as aÿk=tkak.
Therefore, Eq. (32) can be further written as

F�B� �
X1
k�1

akfk�B�, �34�

where
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fk�B� � Bk � tkBÿk �35�

is continuous inside the ellipse. Eq. (35) can be used to construct solutions within the ellipse.

4.2. Construction of Green's functions

The Green's functions for a piezoelectric material with an elliptical hole subject to electric
impermeable condition was studied by Lu and Williams (1998). Although not mentioned there, the
terms concerning image singularities were included in the solutions. Ting (1996) thoroughly discussed
the necessity of including image singularities in constructing a Green's function. With knowledge of this,
and making use of the results of Eqs. (17), (24) and (25), the general solutions in the piezoelectric
material and in the cavity for the present problem can be written as (Ting, 1996; Lu and Williams, 1998)

u � 1

p
Im
�
Ahln�B� ÿ B�0�iq

	� 1

p
Im

X4
b�1

n
Ahln�Bÿ1� ÿ �Bb0�iqb

o
� 1

p
Im

X1
k�1

1

k

�
AhBÿk� igk

	
,

c � 1

p
Im
�
Bhln�B� ÿ B�0�iq

	� 1

p
Im

X4
b�1

n
Bhln�Bÿ1� ÿ �Bb0�iqb

o
� 1

p
Im

X1
k�1

1

k

�
BhBÿk� igk

	
�36�

and

fc ÿ fc
0 �

1

p
Im

X4
b�1

n
ln
ÿ
zÿ ẑb

�
qc
b

o
� 1

p
Im

X1
k�1

1

k

�
fk�B�hc

k

	
,

cc ÿ cc
0 �

1

p
Im

X4
b�1

n
bc ln

ÿ
zÿ ẑb

�
qc
b

o
� 1

p
Im

X1
k�1

1

k

�
bcfk�B�hc

k

	
: �37�

In Eqs. (36) and (37), the unknowns qb, gk, q
c
b, h

c
k, f

c
0 and cc

0 are constants to be determined, fk(B ) is
given by Eq. (35), and

q � ATp,

x0
1 � pax

0
2 � za0 � caBa0 � daBÿ1a0 , x̂

b
1 � ix̂b2 � ẑb � 1

2
�a� b�

�
Bb0 � tBÿ1b0

�
, �38�

from which Ba0 and ẑb can be de®ned. h�i indicates a four-order diagonal matrix. The meaning of each
term in the solutions of Eqs. (36) and (37) has been illustrated in detail by Ting (1996). It should be
noticed that the solutions within the cavity are scalar functions. Now, the problem is reduced to
determine the unknowns given above, according to the boundary conditions (29).

4.3. Determination of unknown constants

On the elliptical boundary, Eq. (36a) is reduced to

P. Lu et al. / International Journal of Solids and Structures 37 (2000) 1065±1078 1071



u�s� � 1

p
Im

8<:ÿ ÅAh ln� �sÿ �B�0�i Åq�
X4
b�1

ln
�
sÿ1 ÿ �Bb0

�
Aqb �

X1
k�1

1

k
sÿkAgk

9=;: �39�

In the above expression, the relation Im�F � � ÿIm� �F� has been used. By writing

zÿ ẑb � 1

2
�a� b��Bÿ Bb0�

ÿ
1ÿ t̂bBÿ1

�
, t̂b � tBÿ1b0 , �40�

Eq. (37a) on the elliptical boundary, can be expressed as

fc�s� ÿ fc
0 �

1

p
Im

8<:X4b�1
�

ln

�
1

2
�a� b�

�
qc
b ÿ ln

�
sÿ1 ÿ �Bb0

�
�qc
b � ln

ÿ
1ÿ t̂bsÿ1

�
qc
b

�
�
X1
k�1

1

k

sÿk
�
ÿ �hk � tkhk

	9=;:
�41�

The expressions of c and c c on the elliptical boundary can be similarly obtained. Substituting these
relations into the boundary conditions (29), and with the use of the series representation,

ln�1ÿ x� � ÿ
X1
k�1

1

k
xk, �42�

one has

fc
0 � ÿ

1

p
Im

8<:ln

�
1

2
�a� b�

�X4
b�1

qc
b

9=;, cc
0 � ÿ

1

p
Im

8<:bc ln

�
1

2
�a� b�

�X4
b�1

qc
b

9=;, �43�

eT
n
ÿ ÅAIb Åq� Aqb

o
� ÿ �qc

b, ÿ ÅBIb Åq� Bqb � ÿe �b
c
�qc
b, �44�

eTAgk � �h
c

k � tkhc
k ÿ

X4
b�1

t̂kbq
c
b, Bgk � e �b

c �h
c

k � ebc

8<:tkhc
k ÿ

X4
b�1

t̂kbq
c
b

9=;: �45�

In the above

I1 � diag�1, 0, 0, 0�, I2 � diag�0, 1, 0, 0�, I3 � diag�0, 0, 1, 0�, I4 � diag�0, 0, 0, 1�: �46�
From Eq. (44), qb and qc

b can be determined:

qb � Nÿ11
ÅN2Ib Åq, qc

b � eT
n

Aÿ ÅA ÅN
ÿ1
1 N2

o
Ibq, �47�

where N1, N2 and HE are de®ned as

HE � bcI4A � ÿiE0I4A, N1 � B�HE, N2 � BÿHE: �48�
Constants gk and hc

k can be determined as follows. From Eq. (45), we have

P. Lu et al. / International Journal of Solids and Structures 37 (2000) 1065±10781072



�h
c

ke � ÿ 1

2 �b
c �BÿHE�gk: �49�

Substitution of Eq. (49) into Eq. (45b) leads to

�B�HE�gk � ÿtk
ÿ

ÅBÿ ÅHE

�
Ågk ÿ 2bcyke, �50�

where

yk �
X4
b�1

t̂kbq
c
b �

X4
b�1

tkBÿkb0 q
c
b: �51�

Therefore, gk can be obtained by solving Eq. (50), i.e.

gk � ÿ2bc Ãgk, �52�
where

Ãgk �
n

N1 ÿ t2k ÅN2
ÅN
ÿ1
1 N2

oÿ1n
yk � tk �yk ÅN2

ÅN
ÿ1
1

o
e, �53�

and hc
k is given from Eq. (49) as

hc
k � ÿeT ÅN2 Ãg

k

: �54�

So far, all the unknown constants in the Green's function solutions (Eqs. (36) and (37)) have been
determined according to the boundary conditions. It can be veri®ed that the results include those of the
electric impermeable model. When E0=0, we have b c=0 and HE=0. Therefore, Eqs. (52) and (47a), in
this case, gives gk=0 and qb�Bÿ1 ÅBIbq. By substituting them into Eq. (36), the expressions are exactly
the results deduced by Lu and Williams (1998).

Generally, the solutions of Eqs. (36) and (37) include in®nite series. However, when the cavity is
circular, the solutions can be reduced to a closed form. In the case, t in Eq. (31) equals zero. This leads
to yk=0 in Eq. (51), and further gk and hc

k all vanish. The in®nite series in the solutions therefore
disappear.

5. Electric and mechanical ®elds in material

After the Green's function is obtained, the stresses and the electric displacements in the material,
caused by the generalized concentrated forces p, can be determined by Eq. (16), i.e.�

s2j
D2

�
� c,1 �

1

p
Im

8<:B

24hln�B� ÿ B�0�i,1q�
X4
b�1
hln
�
Bÿ1� ÿ �Bb0

�
i,1qb �

X1
k�1

1

k
hBÿk� i,1gk

359=;
�
s1j
D1

�
� ÿc,2 � ÿ

1

p
Im

8<:B

24hln�B� ÿ B�0�i,2q�
X4
b�1
hln
�
Bÿ1� ÿ �Bb0

�
i,2qb �

X1
k�1

1

k
hBÿk� i,2gk

359=;, �55�

where h�i,1=@h�i/@x1 and h�i,2=@h�i/@x2.
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To determine the hoop stress along the cavity boundary, the generalized hoop stress vector

tn � ÿc,m �56�
has to be obtained at ®rst. Since

@

@m
f �Ba�

����
G
t � ÿpa�y� isf

0�s�
r

,
@

@n
f �Ba�

����
G
� ÿ isf

0�s�
r

, �57�

where

pa�y� � pa cos yÿ sin y
pa sin y� cos y

, r � �a2 sin2 W� cos2 W�1=2, �58�

we have

@

@m
hln�B� ÿ B�0�i

����
G
�
X4
a�1

pa�y�Iara, @

@m
hln
�
Bÿ1� ÿ �Bb0

�
i
����
G
�
X4
a�1

pa�y�Ia �rb,
@

@m
hBÿk� i

����
G

� iksÿk

r

X4
a�1

pa�y�Ia, ra � ÿis
r�sÿ Ba0�

: �59�

Substitution of Eq. (59) into Eq. (56) leads to

tn � ÿ1

p
Im

8<:B
X4
a�1

pa�y�Ia
24raq�X4

b�1
�rbqb �

X1
k�1

isÿk

r
gk

359=;: �60�

Therefore, the hoop stresses and the tangential component of the electric displacement along the
boundary are given by

snn � nTI0tn, snm � mTI0tn, sn3 � eT0 tn, Dn � eTtn, �61�
where

I0 �
24 1 0 0 0
0 1 0 0
0 0 1 0

35, e0 � �0 0 1 0�T, �62�

and e is de®ned in Eq. (29).
By letting b 4 0 in Eq. (19), the problem discussed before becomes an in®nite piezoelectric domain

with a slit crack of length 2a. Therefore, Eqs. (30) and (38b) are reduced to

Ba �
za �

���������������
z2a ÿ a2

p
a

, Ba0 �
za0 �

����������������
z2a0 ÿ a2

q
a

: �63�

On the line ahead of the crack tip, i.e. x2=0 and |x1| > a, it gives

Ba �
x1 �

����������������
x2
1 ÿ a2

q
a

� w, �64�
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which is a real variable. In this case, we have

@ ln�Bb ÿ Bb0�
@x1

� 1����������������
x2
1 ÿ a2

q w
wÿ Bb0

,
@ ln�Bÿ1a ÿ �Bb0�

@x1
� 1����������������

x2
1 ÿ a2

q 1

w�Bb0 ÿ 1
,
@Bÿkb

@x1
� ÿ kwÿk����������������

x2
1 ÿ a2

q : �65�

Therefore, Eq. (55a) on the line |x1| > a can be written as

8>><>>:
s21
s22
s23
D2

9>>=>>; � ccc,1 �
1

p
����������������
x2
1 ÿ a2

q Im

8<:X4
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With the de®nition of stress and electric displacement intensity factors, it gives
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where KI, KII and KIII are the stress intensity factors and KD is the electric displacement intensity factor.
Eq. (67) can be simpli®ed by using Eqs. (44b) and (45b):

K � 1������
pa
p Im

8<:X4b�1 1

1ÿ Bb0

ÿ
2BIbqÿ bcqc

be
�ÿX1

k�1
bc

0@ �h
c

k � hc
k ÿ

X4
b�1

Bÿkb0 q
c
b

1Ae

9=;
� 2������

pa
p Im

�
Bh 1

1ÿ B�0
iAT

�
pÿ 2������

pa
p Im

8<:bc

0@X4
b�1

qc
b

1ÿ Bb0
�
X1
k�1

hc
k

1A9=;e, �68�

in which Eq. (38a) and t= 1 when b = 0 as well as the series representation

X1
k�1

xÿk � 1

xÿ 1
, jxj > 1, �69�

have also been used. It can be seen from Eq. (68) that the ®rst term on the right side of the equation is
just the result obtained by Lu and Williams (1998) for the conventional electric impermeable boundary
conditions, and the rest of the terms only contribute to the electric displacement intensity factor KD. It
means that the stress intensity factors do not rely on the use of the electric boundary conditions. This
conclusion is consistent with the case reported for a piezoelectric body with a crack subject to some
simple mechanical and electrical loading (Zhang et al., 1998).

Eq. (68) can be further simpli®ed. From Eqs. (54), (51) and (47b), we have
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where
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Substitution of Eq. (70) into Eq. (68) yields
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It can be seen that when E0=0 or b c=0, the intensity factors reduce to the conventional form (Lu
and Williams, 1998).

6. Electric ®elds in cavity

After the constants qc
b and hc

k have been known from Eqs. (47) and (54), the electric potential inside
the cavity can be obtained by Eq. (37a), and the components of the electric ®eld in Oc can be
determined as

E c � E c
1 ÿ iE c
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where z, B and t are de®ned by Eq. (31).
Now we begin to determine the normal component of the electric displacements, and verify the

continuity condition of the component on the curve G. According to the derivative relation Eq. (57b),
we have
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and
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Substitution of Eqs. (74) and (37b) into Eq. (27) leads to
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which is the normal component of the electric displacements on the curve G, obtained by the expression
for the electric potential inside the cavity. On the other hand, by substituting Eqs. (75) and (36b) into
Eq. (21), one has
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in which Eqs. (44b) and (45b) have been used. The ®rst three components of tm in Eq. (77) are seen to
be zero. It is consistent with the prescribed boundary conditions (28a). Eq. (77) can be further simpli®ed
as
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p
Im

8<:X4b�1rbbcqc
be�
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It shows that Dm � Dc
m. This from another side con®rms the correctness of the results obtained in the

paper. It can also be seen that Dc
m � 0 when E0=0.

7. Concluding remarks

The Green's functions of an in®nite two-dimensional piezoelectric material containing an elliptical
cavity are re-investigated by introducing exact electrical boundary conditions on the hole boundary, and
corresponding modi®ed solutions are obtained in general form. By setting E0, the dielectric constant in
the cavity, to be zero, the modi®ed Green's functions are returned to the conventional ones (Lu and
Williams, 1998). When the cavity is reduced to a slit crack, the results show that the values of the stress
intensity factors on the crack tip by using the present solutions are same as those obtained based on the
electric impermeable condition. It means that the stress intensity factors do not rely on the use of the
electric boundary conditions. It is also veri®ed that the normal components of the electrical
displacements obtained, respectively, by the expressions for the electrical potential inside the cavity and
in the material are indeed the same on the curve boundary. This con®rms the correctness of the results
in the paper.
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Since the general electrical boundary conditions are introduced, the modi®ed Green's functions are
more reasonable physically. The results are of importance for both analytical and numerical analyses for
piezoelectric materials with defects. For example, with the solutions, one can investigate the in¯uence of
the electrical ®elds inside the cavity to the mechanical and electrical properties of the considered
problems. The solutions can also be used as kernels of boundary integral equations in BEM analyses.
Since the Green functions have satis®ed the boundary conditions of the hole or crack, the boundary
integrals along these surfaces can be avoided (Mukherjee, 1982), which could save a lot of numerical
computing e�orts in the BEM approach.
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