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Abstract

In this paper, the Green’s functions of an infinite two-dimensional piezoelectric material containing an elliptical
cavity are re-investigated by introducing exact electric boundary conditions on the hole boundary, and the
corresponding modified solutions are obtained. By setting ¢, the dielectric constant in the cavity, to be zero, the
modified Green’s functions are returned to the conventional ones (Lu and Williams, 1998). Furthermore, the hoop
stresses along the hole boundary under the action of a set of generalized concentrated forces are obtained. When the
hole is reduced to a slit crack, the expressions of generalized stress intensity factors are also provided. © 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problems of Green’s functions for two or three-dimensional piezoelectric materials have been
studied by many researchers (e.g. Dunn, 1994a; Norris, 1994; Khutoryansky and Sosa, 1995; Lu and
Williams, 1998). The electroelastic Green’s functions play an important role in the analysis of
piezoelectric inclusion and inhomogeneity problems, defect and crack problems, as well as stress and
electric concentration problems. Especially, the Green’s functions can be used as fundamental solutions
of well used boundary element method for solving piezoelectric problems with finite boundary sizes and
subjected to general mechanical—electric loading (Lu and Mahrenholtz, 1994; Lee and Jiang, 1994;
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Khutoryansky and Sosa, 1995; Liang and Hwu, 1996). Therefore, an in-depth investigation and
understanding of the properties for the mechanical—electric coupled Green’s functions is essential.

Due to the similarities of the expressions between elasticity and piezoelectricity, the solutions for
elastic problems usually can be extended to relevant piezoelectric problems following proper regularities
in many cases. However, care should be taken for some situations because the direct extensions may
lead to physically incorrect results. One of the examples is given by considering a piezoelectric material
containing a cavity or a crack with free surface. The solutions for this kind of the problems were
obtained by extending the relevant results of elastic medium with traction free holes (for examples, Sosa,
1991; Pak, 1992; Chung and Ting, 1996; Lu and Williams, 1998). In physical terms, this kind of
extensions implies that the boundary condition along the cavity or crack surface is assumed to be
traction free and electric impermeable, i.e. ignoring the electric field within the cavity or crack. Recent
studies have shown that this commonly used electric boundary condition in the literature could lead to
physically unreasonable results, especially in the case of cracks (Dunn, 1994b; Sosa and Khutoryansky,
1996; Zhang et al., 1998). Therefore, the current work in the problems has tended to use the exact
electric boundary condition, i.e. the normal component of electric displacement is continuous across the
cavity or crack surface. In view of this fact, some of the previous results based on the simplified electric
conditions should be improved.

In this paper, the Green’s functions of piezoelectric material with an elliptical cavity are re-
investigated. The solutions were obtained by Lu and Williams (1998) based on the assumption of electric
impermeability on the surface of the cavity. As indicated above, the solutions may result in considerable
error when the cavity becomes a very slender ellipse or a sharp crack. Due to the important analytical
and numerical applications of the Green’s functions in solving piezoelectric materials with defects, the
formulations obtained previously should be modified by introducing the correct electrical boundary
conditions.

Recently, Ting (1996) investigated Green’s functions for an infinite anisotropic elastic medium with an
elliptical inclusion of dissimilar material. By carefully including image singularities in the solutions, the
constructed Green’s functions subjected to a singularity outside, inside, or on the interface of the
elliptical inclusion can be reduced to the same solution when the applied singularity is on the elliptical
boundary. Furthermore, the paper provides a regular way to construct the Green’s functions of the
subject. In this paper, the suggested method by Ting (1996) is extended to determine the Green’s
functions for a piezoelectric medium with an elliptical cavity.

2. Basic equations

In a fixed rectangular coordinate system x; (i = 1, 2, 3), the linear constitutive relations for
piezoelectric materials are given by

Ojj = Ci/km’ykm - emi/EIMa D; = €ikmYVim €mEm, (1)

where o, 75 D; and E; are stress, strain, electric displacement and electric field components,
respectively; Cim, €ny; and ¢, are elastic, piezoelectric and dielectric constants, respectively, which
satisfy the following symmetries:

Cijkm = Cjikm = Cijmk = C/cmija C€mij = €mjis €im = €mi- (2)

If u; are mechanical displacements and ¢ the electric potential, the deformation relations are
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1
Vi = 5(“1’,/’ +ui), Ei = —¢ ;. 3)
In the absence of body forces and free charges, the governing equations of linear piezoelectricity are
c;i=0,D;; =0. 4)

To treat the elastic and electric variables on an equal footing and reduce the amount of writing, the
notation introduced by Barnett and Lothe (1975) is reviewed here. Defining

_Juw, K=123,
Uk = { ¢, K =4, (5)
_ ) Vkm> K,m = 1,2,3,
ZKm - { Ema K= 4, m = 1’2’3’ (6)

_op iJ=123,
Z"’_{Di, i=123J=4, )

C[jkm’ i,J,K,m = 1,2,3,

Cmij» iJm=123; K=4, (®)
Cikm, LKm=1273;J=4,

—€im, Lm=123; J K=4,

Eijkm =

in which lower case subscripts take on the range 1-3, while the capital subscripts take on the range 1-4,
and repeated capital subscripts are summed over 1-4. With this notation, the constitutive equations Eq.
(1), and the governing equations Eq. (4) can be expressed in shorthand form as

Z‘1'.1 = EiJKmZKm = EiJKm UK,m (9)

2iyi=0. (10)

It is seen that the governing equations for piezoelectric problems have similar expressions to those for
elastic ones. Therefore, some solutions for elastic problems can be extended to relevant piezoelectric
ones with proper modifications.

For two-dimensional deformations in which u; and ¢, or Ug, depend on x; and x, only, an extended
version of Stroh formalism satisfying Eqgs. (9) and (10) has been developed (see, for example, Chung and
Ting, 1996; Lu and Williams, 1998). It is summarized here. The general solution to Eq. (10) could be
expressed as

u = {u,d} = 0af(2), z = x1 + px, (11)
in which f{z) is an arbitrary function of z and p and a satisfy the relation

{Q+p®R+R") +p’Tla=0, (12)
where Q, R and T are 4 x 4 matrices:

Oix = Evx1, Rix = Euge, Tix = Exgo. (13)
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Let the generalized stress functions, i, be defined as

¥ =bf(2), (14)
where
b=R"+pT)a= —;—)(Q + pRa. (15)

The elastic stress and the electric displacements can then be expressed as

ford = { o} = v (16)

It is known that the four order equations Eq. (12) are an eigenvalue problem, which gives four pairs
of complex conjugates and corresponding vectors. Let p, (x=1, 2, 3, 4) be eigenvalues with
Im{p,} >0, a, and b, the associated eigenvectors, the general solutions for the generalized
displacements u and generalized stress functions iy can thus be written as (Ting, 1996)

1 . 1 .
u=— Im{A())a) ¥ = — Im{B((.))a), (17)
where

{f(z.)) = diag[ fz1):/(22):/(23)/ (20, 4 = {91.42.43.94} ",

A =[a1,a3,a3,a4], B = [by,by,b3,by], (18)

and z,=x;+p,x,. The arbitrary functions f{z) and the unknown constant vector q in Eq. (17) are
determined by the boundary conditions set for each particular problem.

It is seen that the extended Stroh formalism for piezoelectricity has the same form as the Stroh
formalism for anisotropic electricity. Therefore, most properties and identities existing in the Stroh
formalism for anisotropic elasticity can be extended to piezoelectric problems.

3. Boundary conditions of a piezoelectric material with an elliptical cavity

Consider an infinite two-dimensional anisotropic piezoelectric material containing an elliptical cavity,
described by @ and €., respectively, and subjected to a concentrated mechanical force and electric
charge density vector p at x* = (x(l), x(z)) outside the ellipse, as shown in Fig. 1. The contour I is given
by

X1 =acos 3, xo =hbsin 9, (19)

where & is a real parameter, and a and b are the semi-major and semi-minor axes of the ellipse,
respectively. The unit tangential vector n and the unit normal vector m are given by

n = {cos 0, sin 0, 0}7, m = {—sin 0, cos 0, 0}7, (20)

where 0 is directed counterclockwise from the positive x;-axis to the direction of n. From Eq. (16), the
traction and electric displacement components in the piezoelectric material medium, along the hole
surface, can be expressed as
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Fig. 1. An infinite two-dimensional piezoelectric material with an elliptic cavity under a concentrated force vector p acting at point

0
X

tm = {S -m, A : m}T = {tly ZZa [33 DIH}T = lp,n? (21)

in which #; is the component of surface traction vector.

The cavity is assumed to be filled with a homogeneous gas of dielectric constant ¢y, and is free of
forces and surface charge density (Sosa and Khutoryansky, 1996). Therefore, the induced electric
displacements Dfand electric fields E exist in €, and can be described via the constitutive relation

D = ¢E; (22)
and the deformation relation
Ef=—¢, (23a)
respectively. The electric potential ¢ © in Q. can be solved from an equilibrium equation, i.e.
Di; = ¢5 =0. (23b)
Following the treatment of the previous section, the general solution to Eq. (23b) can be expressed as
" =[(2), z=x1 +ixa, 24)

where f°(z) is an arbitrary function of z. It can be verified that Eq. (24) has satisfied Eq. (23b).
Similarly, defining

Y= b(2), b = —ie, (25)
the electric displacements DS, can therefore be written as
Df = — fz, DS = 1//?1. (26)

In this way, the normal component of the electric displacement can be expressed as
D, =D -m =y, 27)

The boundary conditions along the surface of the cavity is prescribed such that the boundary is
traction free and the normal component of the electric displacement as well as the electric potential are
continuous across the surface, i.e.
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Zj = Oa Dm = D;:na <l5 = ¢C- (28)

In the previous work by Lu and Williams (1998), Eq. (28b) and (28¢c) were approximated by the single
equation D,,=0 (the so-called condition of impermeability). By using Eqgs. (21) and (27), after proper
treatment, Eq. (28) can be equivalently expressed as

eflu=¢°, y=ey, e=|[0,0,0, 1], (29)

where u and s are four order vectors given by Eq. (17), ¢ and ¢ are the scalar functions in the cavity.
Eq. (29) provides a concise form of the general boundary conditions defined on the cavity.

4. Green’s functions
4.1. Conformal mapping

It is known that the transformation functions,
Zy = CyGy + decgo?la (30)

can map the region Q outside the ellipse in the z,-plane onto the outside of a unit circle in the ¢-plane.
In Eq. (30), ¢,=1/2(a—ip,b) and d,=1/2(a—ip,b). Since the roots of dz,/dg, are located inside the unit
circle, the transformations Eq. (30) are one-to-one outside the hole and ¢,| r=¢" when z, are on the
elliptical boundary, in which 9 is defined in Eq. (19). On the other hand, the mapping of the region Q.
inside the ellipse is done by considering a straight line I'y along x; and of length 2+v/a? — % (Sosa and
Khutoryansky, 1996). The function,

= %(a—kb)(g e, (31)

can therefore map the region in the z-plane enclosed by the ellipse excluding the line I'y onto the region
in the ¢-plane of an annular ring between the unit circle ¢ r=¢" and the inner circle ¢| ro = Jie? in
which r=(a—b)/(a+b). In the annular ring, a holomorphic function @(c) can be expressed by Laurent’s
expansion as

P =Y aus ™+ Y ad Vi<l <l (32)
k=1 k=0

To ensure the function is single valued inside the cavity and along the line Iy, the following condition
must be satisfied (Sosa and Khutoryansky, 1996):

D(/1e™) = B(/167), (33)

from which the relations between the coefficients a_; and a; in Eq. (32) can be determined as a_j = t*ay.
Therefore, Eq. (32) can be further written as

D) = > afi(c). (34)
k=1

where
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filQ) =+ (35)
is continuous inside the ellipse. Eq. (35) can be used to construct solutions within the ellipse.

4.2. Construction of Green’s functions

The Green’s functions for a piezoelectric material with an elliptical hole subject to -electric
impermeable condition was studied by Lu and Williams (1998). Although not mentioned there, the
terms concerning image singularities were included in the solutions. Ting (1996) thoroughly discussed
the necessity of including image singularities in constructing a Green’s function. With knowledge of this,
and making use of the results of Egs. (17), (24) and (25), the general solutions in the piezoelectric
material and in the cavity for the present problem can be written as (Ting, 1996; Lu and Williams, 1998)

IS

1 1
w= " Im{AlnG, ~ cola) + - Im Y {AGnG — gy )+ m Z 0

=1
b= Lt (B — conal + L im > (B = oy} + L im 3B e (36)
~r G % *0 T — * p0)74p T £ k * k

and

C C 1 ! oy C 1 - 1 C
P — df = - Im l;{ln(z - zﬁ)qﬁ} + - Im ;%{fk@)hk},

R~ R [N
W — Y8 = - Im Z{b In(z — z,;)q;} +—Im ) PR ). (37)
T3 T
In Eqs. (36) and (37), the unknowns qg, g, dp» IS, ¢g and g are constants to be determined, fi(c) is

given by Eq. (35), and

q=A'p,

x] +Pax2 = Zy0 = CyCyo t+ dacso,() 5 xl + lxz = Z _(a + b)(C/}O + tS/g() ) (38)

from which ¢,y and Zg can be defined. () indicates a four-order diagonal matrix. The meaning of each
term in the solutions of Egs. (36) and (37) has been illustrated in detail by Ting (1996). It should be
noticed that the solutions within the cavity are scalar functions. Now, the problem is reduced to
determine the unknowns given above, according to the boundary conditions (29).

4.3. Determination of unknown constants

On the elliptical boundary, Eq. (36a) is reduced to
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1 _ ~ _ _ 4 1 B o0 1 k
u(e) =~ Im! — A(In@ — Z0)d + ,;2:1: (o™ ~ &) Agy + ;%a Ag | (39)
In the above expression, the relation Im(F) = —Im(F) has been used. By writing
2= 2= @+ B — g1 — 2. B = 40
B = 3 a+ b)(s spo) T5C » Tp = tS[}()a ( )

Eq. (37a) on the elliptical boundary, can be expressed as

4

1 1 R o0 1
¢C( )_(Iﬁo _Im Z{ln[z(a—i-b)}q%—ln(a_l —éﬁo)(i‘ig—i—ln(l —‘[ﬂg_l)q;}} + Z%
=1 =1

(41)

oM = hu + i}

The expressions of Y and Y€ on the elliptical boundary can be similarly obtained. Substituting these
relations into the boundary conditions (29), and with the use of the series representation,

[0¢]
1
In(1 —x) = _kZExk’ (42)
=1
one has
°—1111b4C C—lIb°11b4c 43
¢5=——_1Im ni(a+>ﬁ;qﬁ Wy =——Im n§<a+>ﬂ;qﬂ , (43)
e’| - Alja+ Aq, | = —G5, —Blyd+Ba, = €5, (44)
e’Ag, + Iy, = FKS — Z%;;q;,, Bg, +eb i, =eb®{ IS — Z%’,;q; : (45)

In the above
I, = diag[1, 0, 0, 0], I, = diag[0, 1, 0, 0], Is = diag[0, 0, 1, 0], Iy = diag[0, 0, 0, 1]. (46)
From Eq. (44), q; and gj can be determined:
a5 = N 'NoLg, g = eT{A — AN, 'N, }Iﬁq, (47)
where N;, N, and H, are defined as
H, = I'ILA = —ic)l4A, Ny =B+ H.,, N, =B — H.. (48)

Constants g, and 4§ can be determined as follows. From Eq. (45), we have
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—

1
he=——(0B —H)g,. 49
K 2b( )& (49)

Substitution of Eq. (49) into Eq. (45b) leads to

(B +Hog, = —*(B — H)g, — 26y, (50)
where
‘e 4
ve= Y Ady =Y s (51)
p=1 p=1
Therefore, g, can be obtained by solving Eq. (50), i.e.
g, = —2b°g;, (52)
where
a e ke N
g, = iN] —t Nle Nz} {yk +t yszNl }e, (53)

and /i is given from Eq. (49) as
h = —e"Ny g . (54)
k

So far, all the unknown constants in the Green’s function solutions (Egs. (36) and (37)) have been
determined according to the boundary conditions. It can be verified that the results include those of the
electric impermeable model. When ¢q=0, we have »°=0 and H,=0. Therefore, Eqgs. (52) and (47a), in
this case, gives g, =0 and qg :B’ll_ilﬁq. By substituting them into Eq. (36), the expressions are exactly
the results deduced by Lu and Williams (1998).

Generally, the solutions of Egs. (36) and (37) include infinite series. However, when the cavity is
circular, the solutions can be reduced to a closed form. In the case, 7 in Eq. (31) equals zero. This leads
to =0 in Eq. (51), and further g, and Af all vanish. The infinite series in the solutions therefore
disappear.

5. Electric and mechanical fields in material

After the Green’s function is obtained, the stresses and the electric displacements in the material,
caused by the generalized concentrated forces p, can be determined by Eq. (16), i.e.

4 0
()] 1 _ = 1 —_
D; =¥, = - Im{ B| (In(c, — ¢.0)).1q + ﬁ;(ln(g*l - C/;O))M]ﬁ + ;%@* )8

4 00
oy | _ _ 1 -1 _ = L
D=V = ImIB|(n(. — c.0)aa+ /;‘an(c* = oy Dl om | 1 69

where (-),; =9(-)/dx; and (-),,=9(-)/0x;.
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To determine the hoop stress along the cavity boundary, the generalized hoop stress vector

t, = _l//am (56)
has to be obtained at first. Since
d igf '(o) 0 iof '(o
2| 1= -p0 2D Vg = O, 57)
m r p on r P
where
Do cos 0 —sin 0 2 .2 2 ql/2
p(0) =———— p=(a"sin” 3+ cos” §) /-, (58)
Dy sin 0 + cos 0
we have
2, =] = pu0r L5 =5 )| = Y pon 6
am Sx 50 - £ o ol ors am % 540 - a o ol s am Gy -
0k 4 .
SR 3 M) B p—_— (59)
P p(0 = Sy0)

Substitution of Eq. (59) into Eq. (56) leads to

1 4 4. O jgk
t=—— Im B;:l[’a(g)la roq + ;Vﬁ% + ;Tgk : (60)

Therefore, the hoop stresses and the tangential component of the electric displacement along the
boundary are given by

Onn = I’lTI()t”, Onm = mTIOtna Op3 = e({tna D, = eTtm (61)
where
1 0 00
IL,=|0 1 0 0/[,e=[0010], (62)
0 01 0

and e is defined in Eq. (29).
By letting b — 0 in Eq. (19), the problem discussed before becomes an infinite piezoelectric domain
with a slit crack of length 2a. Therefore, Egs. (30) and (38b) are reduced to

2 2
Zy+ /22— Za0 F /200 — @
Co = > Ca) = . (63)
a a

On the line ahead of the crack tip, i.e. x,=0 and |x;| > q, it gives
X1+ ,/x} —a?

=—YV = 64
Su p b4 (64)
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which is a real variable. In this case, we have

dln(cs—cp) 1 v ool —Gp) 1 1At Kyt 65)
0x1 /x%_az}{—C/so’ x| /x%_az)@/so—l’ 9x /x%—az
Therefore, Eq. (55a) on the line |x;| > « can be written as
021
o 1
022 =Yy, = ————1Im Z Blgq + Z Bq[; - Z/ ‘Bg, |. (66)
23 n/x3 —a? =L C/}O =X
1
Dy
With the definition of stress and electric displacement intensity factors, it gives
Ku N
K = _
K= = lim 27(x; — a)V, (BI Ba;) - > Be. |, 67
Ky [ = Jim V200 — 0w, = Zl 59+ Ba; ; & (67)
Kp

where K;, Kj; and Kjyp are the stress intensity factors and Kp is the electric displacement intensity factor.
Eq. (67) can be simplified by using Eqs. (44b) and (45b):

1 4 1 00 ~ 4
K=—1Im 2BIgq — bogse) — Y b i +H =Y cplqs |e
N PR > 2

4 C o0
)AT}p——Im be q’i D ARD (68)

1
doxF=—— x> 1, (69)
x—1

have also been used. It can be seen from Eq. (68) that the first term on the right side of the equation is
just the result obtained by Lu and Williams (1998) for the conventional electric impermeable boundary
conditions, and the rest of the terms only contribute to the electric displacement intensity factor Kp. It
means that the stress intensity factors do not rely on the use of the electric boundary conditions. This
conclusion is consistent with the case reported for a piezoelectric body with a crack subject to some
simple mechanical and electrical loading (Zhang et al., 1998).

Eq. (68) can be further simplified. From Egs. (54), (51) and (47b), we have
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o0 o8
Im Zb%,i = —Im{ e’N,(N; — NoN7'N,) ™ ;ﬁ—lbc (5,}0 5+ Spo 43NNy )

4
C 1 C
=Im3bG) T dj 1 (70)
=1 5p0

where

G= eT{Nz (N1 - NszlNz) R, (N — NoNTIN, ) 7 NoN ! }e. (71)

Substitution of Eq. (70) into Eq. (68) yields

K= 2 Im{B( )AT} 2 b°(1+G)Z

Jra 1—¢y Vna —Cﬁo
2 . o
:ﬁlm{[B—b(l—i—G)L;(A—ANl Nz)](l_g*o)AT}p, (72)

It can be seen that when ¢;=0 or H°=0, the intensity factors reduce to the conventional form (Lu
and Williams, 1998).

6. Electric fields in cavity

After the constants g and /j have been known from Egs. (47) and (54), the electric potential inside
the cavity can be obtained by Eq. (37a), and the components of the electric field in Q. can be
determined as

c c ALY c - C 1 § 1 C _Zk
E :El—lE :—¢’1+l¢’2215 ;EQI;‘F;W k(> (73)

where z, ¢ and ¢ are defined by Eq. (31).
Now we begin to determine the normal component of the electric displacements, and verify the
continuity condition of the component on the curve I'. According to the derivative relation Eq. (57b),

we have
1 g 1
=—= —t+t ,
r P\ —=Sp o1y —1

—i%(dk —Fo7hy, (74)

d ln(z — f/})
an

1 .
= ;nln[z(a + b)(c — g,;o)(l — ¢ 1)j|

7/[1((5)

ad -
— (g/\ + t/\g /()
on r

and
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3 - 3 - B}
%ﬂn(g* - Q*())> F: ﬁ;rﬁlﬁ’ %(ln(g* - €/30)> 1"= rﬁIa
0 ika™F —io
— e =—Lrp=——. (75)
an" p P oo - Spo)
Substitution of Egs. (74) and (37b) into Eq. (27) leads to
1 Lk [ @ 1 2 ib¢
D¢ — c’ = —— Im o + c + e O_/(_Zko,—k he , 76
== ﬁle<G_gﬁo G%ﬁl_l)q,; 2 Vi (76)

which is the normal component of the electric displacements on the curve I', obtained by the expression
for the electric potential inside the cavity. On the other hand, by substituting Eqs. (75) and (36b) into
Eq. (21), one has

1 4 4. X ik
tw=1y,=—Im > rgBlq+ Y 7Bgy+ Y —Bg
n =1 =1 = P
1 4 - ¢ > ibCO'_k — P 4 N
=—-Im{ — Zr,;b gpe + Z hy +°hy, — erqﬁ e, (77)
T h=1 = P =

in which Eqgs. (44b) and (45b) have been used. The first three components of t,, in Eq. (77) are seen to
be zero. It is consistent with the prescribed boundary conditions (28a). Eq. (77) can be further simplified
as

1 4 X . b1 ‘
t, = — Im E rﬁbcq;e + E l—(—a/‘ + tl‘ffl‘)hi,e — E Z—Tq;e =Dje. (78)
T =1 = P =P ooty —1

It shows that D,, = D;,. This from another side confirms the correctness of the results obtained in the

paper. It can also be seen that DS, = 0 when ¢, =0.

7. Concluding remarks

The Green’s functions of an infinite two-dimensional piezoelectric material containing an elliptical
cavity are re-investigated by introducing exact electrical boundary conditions on the hole boundary, and
corresponding modified solutions are obtained in general form. By setting ¢, the dielectric constant in
the cavity, to be zero, the modified Green’s functions are returned to the conventional ones (Lu and
Williams, 1998). When the cavity is reduced to a slit crack, the results show that the values of the stress
intensity factors on the crack tip by using the present solutions are same as those obtained based on the
electric impermeable condition. It means that the stress intensity factors do not rely on the use of the
electric boundary conditions. It is also verified that the normal components of the -electrical
displacements obtained, respectively, by the expressions for the electrical potential inside the cavity and
in the material are indeed the same on the curve boundary. This confirms the correctness of the results
in the paper.
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Since the general electrical boundary conditions are introduced, the modified Green’s functions are
more reasonable physically. The results are of importance for both analytical and numerical analyses for
piezoelectric materials with defects. For example, with the solutions, one can investigate the influence of
the electrical fields inside the cavity to the mechanical and electrical properties of the considered
problems. The solutions can also be used as kernels of boundary integral equations in BEM analyses.
Since the Green functions have satisfied the boundary conditions of the hole or crack, the boundary
integrals along these surfaces can be avoided (Mukherjee, 1982), which could save a lot of numerical
computing efforts in the BEM approach.
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